

Instytut Automatyki i Robotyki (IAR)

Wydział Automatyki, Robotyki i Elektrotechniki, Politechnika Poznańska

Plan seminariów instytutowych (rok akademicki 2023/2024)

prowadzący: dr hab. inż. Maciej Marcin Michałek, prof. PP

	Tytuł referatu	Prelegenci	Jednostka	Data	Sala	Godz.
1	The problem of the modeling uncertainties in the paradigm of the Active Disturbance Rejection Control*	mgr inż. Radosław Patelski	IAR / Z1	11.10.2023	L123	11:45
2	Restricted Boltzmann Machine as a binary image descriptors processor and its application in a mobile robot for scene recognition*	mgr inż. Szymon Sobczak	IAR / Z1	18.10.2023	16	12:15
3	Neural multi-sensor navigation system with self-testing*	mgr inż. Krzysztof Kolanowski	IAR / Z1	25.10.2023	16	11:45
4	Nonlinear feedback control of the pendulum-cart system	mgr inż. Mohammed Saffarini	IAR / Z1	15.11.2023	L123	11:45
5	The construction of a soft gripper based on magnetorheological elastomer with permanent magnet	mgr inż. Paweł Czopek	IAR / Z1	10.01.2024	L123	11:45
6	Machine learning methods for the control of robotic systems	mgr inż. Piotr Gapski	IAR / Z1	06.03.2024	L123	11:45
7	Visual inspection using artificial intelligence to improve safety of airport area	mgr inż. Jakub Suder	IAR / Z2	10.04.2024	L123	11:45
8	Optimization-based Iterative Learning Control with Applications in Engineering and Healthcare **	prof. Eric Rogers	Univ. of Southampton	24.04.2024	L123	11:45
9	Design of VFO control laws with respect to time- and control-input constraints	mgr inż. Rafał Sobański	IAR / Z1	08.05.2024	L123	11:45
10	Integration of vision and sensory data in the monitoring of the measurement vehicle environment	mgr inż. Kacper Podbucki	IAR / Z2	15.05.2024	L123	11:45
11	Control algorithm for a team of autonomous mobile robots	mgr inż. Arpit Joon	IAR / Z1	22.05.2024	L123	11:45
12	Correction method for the cogging torque effect of the PMSM servo drive	mgr inż. Patryk Bartkowiak	IAR / Z1	29.05.2024	L123	11:45
13	Multi-agent vision system for supporting the performance of orchard spraying	mgr inż. Piotr Góral	IAR / Z2	12.06.2024	L123	11:45

^{*} prezentacja generalna przed obroną doktoratu

L123 - sala w budynku Centrum Wykładowego i Biblioteki PP eM = eMeeting (seminarium zdalne poprzez system eMeeting)

Aktualizacja: 4/04/2024

^{**}Abstract: Many physical systems complete the same finite-duration task over and over again. One example in robotic applications is the 'pick and place' task, where the mission is to move a sequence of payloads from a fixed location and place them in synchronization on a moving conveyor. The series of operations is as follows: i) collect the payload from the specified location, ii) transfer it over a finite duration, iii) place it on the moving conveyor, iv) return to the starting location, and repeat this sequence for as many payloads as required or until a stop is required for maintenance or other reasons. Iterative learning control emerged in the mid-1980s for application to examples such as the one just described, and since then has been a very active research and applications area. This seminar will first describe the development of an optimization-based design in a Hilbert space setting and then demonstrate its application, with supporting experimental results, to pick and place robots, rack feeders, and robotic-assisted stroke rehabilitation. Some currently open research problems will also be briefly discussed.