Lista zagadnień na egzamin dyplomowy

Kieru	unek studiów: Automatic Control and Robotics	Stopień studiów:	pierwszy	
Specjalność:				
Nir	Zagadajo			
Nr 1	Zagadnienia Ways to pass arguments to functions in C++. [Information engineering]			
2	The role of the IP address in network communication. [Information engineering]			
	Representation of w floating point variables in memory. Storing in memory and referring to containe			
3	STL library: vector, map, list. [Information engineering]			
4	Basic laws of electrical engineering. [Electrical engineering]			
5	Conservation laws in physics. [Physics]			
6	Normal stress - strength criterion, allowable stress, and factor of safety. [Theoretical mechanics and			
	mechanics of materials] Quantities characterizing random signals. [Signals and dynamic systems]			
7	Models of dynamic objects. [Signals and dynamic systems]			
8 9	Tuning of linear controllers. [Control basics]			
10	Interplay between frequency- and time-domain responses. [Control basics]			
	Control performance indices. [Control basics]			
11 12	Programming model for real-time systems. [Real-time systems]			
	Process synchronization and communication mechanisms		sks scheduling [Real-	
13	time systems]		sks seneduling. [neul-	
14	Measurement uncertainty. [Metrology]			
15	Sensors and transducers of non-electrical quantities. [Metrology]			
	Microcontroller peripherals (GPIO, TIM, PWM, ADC, DAC,		/R, WDT), operation	
16	and parameters, typical hardware input and output interfa	aces. [Microprocessor syste	ms]	
17	Microprocessor system for network communication (Ethe	rnet, IPv4, TCP, UDP, HTTP, S	SNTP).	
	[Microprocessor systems]			
18	Software and hardware implementation, incl. multiplexers	s, demultiplexers, flip-flops a	nd memory. Software	
	and hardware implementation of sequential and combina	tional circuits. [Microproces	sor systems]	
19	Direct and Inverse kinematics of robot manipulators. Class	sification of methods for solv	ving inverse kinematic	
	problem. [Robotics]			
20	Robot manipulator dynamics model. [Robotics]			
21	Robot control methods; hybrid force/position control of robots. [Robotics]			
22	Basic system identification methods for ARX and OE struct	tures (including model order	estimation). [System	
	identification]			
23	Identifiability and parameter estimation in a closed-loop system	stem. [System identification]	
24	Motion commands of robot manipulators and their param	neters. Kinematic singularitie	s of robot	
	manipulators. [Robot programming and task planning]			
25	Offline robot programming. [Robot programming and task planning]			
26	State observers. [Control theory]			
27	Design and manufacturing process of the Printed Circuit B	oard - from concept to man	ufacturing, assembly	
	and testing. [Electronical and electrical circuits designing]]		
28	Scalar and vector control of AC induction motors. [Contro	l of motion and electric vehi	icles]	
29	Cascade control of position, speed and current of the elec	tric drive - influence of limita	ations on output	
	signals. [Control of motion and electric vehicles]			
30	Mechanical joints in machine design. Basic machine parts	of the drive systems (axles a	nd shafts, bearings,	
30	clutches, brakes and transmissions). [Mechanical construe	_		
31	Peripherals handler in Linux (GPIO, SPI, I2C, UART). Data s	tructures in JSON for sensors	and actuators.	
	[Networks and distributed control systems]			
32	Client-server architecture in terms of the web interface. Ir PHP, C) and client application (HTML, CSS, JS). [Networks	-		

33	Attitude sensors in aerial robots. Hardware components of multi-rotor flying platforms. Quadrotor flight		
	dynamics and control. [Flying robots]		
34	Principle of operation of basic functional blocks of programmable controllers, timers and counters. [Digital		
	controllers and PLC]		
35	Rules of creating programs in languages: LD, FBD and SFC. Cycle of operation of a programmable controller.		
	[Digital controllers and PLC]		
36	Types of production and concepts of their automatization. [Flexible manufacturing systems]		
37	Petri nets. [Flexible manufacturing systems]		
38	Numerical modelling of dynamic objects. Advanced control structures (2DOF, Smith predictor, internal		
	model control, predictive model control, artificial neural networks). [Analysis of control systems]		
39	Communication mechanisms between nodes in Robot Operating System. [Tools and software for robotic		
	systems]		
40	Scientific libraries available in Python. Describe at least two of them. [Tools and software for robotic		
	systems]		